博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
HDU5389:Zero Escape(dp & 类背包)
阅读量:6578 次
发布时间:2019-06-24

本文共 3861 字,大约阅读时间需要 12 分钟。

Zero Escape

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1578    Accepted Submission(s): 801


Problem Description
Zero Escape, is a visual novel adventure video game directed by Kotaro Uchikoshi (you may hear about ever17?) and developed by Chunsoft.
Stilwell is enjoying the first chapter of this series, and in this chapter digital root is an important factor. 
This is the definition of digital root on Wikipedia:
The digital root of a non-negative integer is the single digit value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number is reached.
For example, the digital root of 
65536 is 
7, because 
6+5+5+3+6=25 and 
2+5=7.
In the game, every player has a special identifier. Maybe two players have the same identifier, but they are different players. If a group of players want to get into a door numbered 
X(1X9), the digital root of their identifier sum must be 
X.
For example, players 
{
1,2,6}
 can get into the door 
9, but players 
{
2,3,3}
 can't.
There is two doors, numbered 
A and 
B. Maybe 
A=B, but they are two different door.
And there is 
n players, everyone must get into one of these two doors. Some players will get into the door 
A, and others will get into the door 
B.
For example: 
players are 
{
1,2,6}
A=9
B=1
There is only one way to distribute the players: all players get into the door 
9. Because there is no player to get into the door 
1, the digital root limit of this door will be ignored.
Given the identifier of every player, please calculate how many kinds of methods are there, 
mod 258280327.
 

Input
The first line of the input contains a single number 
T, the number of test cases.
For each test case, the first line contains three integers 
n
A and 
B.
Next line contains 
n integers 
idi, describing the identifier of every player.
T100
n105
n106
1A,B,idi9
 

Output
For each test case, output a single integer in a single line, the number of ways that these 
n players can get into these two doors.
 

Sample Input
 
4 3 9 1 1 2 6 3 9 1 2 3 3 5 2 3 1 1 1 1 1 9 9 9 1 2 3 4 5 6 7 8 9
 

Sample Output
 
1 0 10 60
 

Author
SXYZ
 

Source
题意:给两扇门A和B,两扇门都有一个数值(范围1~9),将N个人分成两组,两组的数根(定义为将各位的数字不断求和直至剩下一个数)分别与门上的数值一致,表示一个分组方案,求总的分组方案数,当全部人恰好能分去A(或B),而B(或A)没有人时,也算一种方案。

思路:显然能恰好分成两组到两扇门时,有总人数的数根sum和a+b的数根相等,定义dp[i][j] 表示前i个人选若干人的数根为j的方案数,易得dp[i][j] = dp[i-1][j] + dp[i][j-c[k]],当j-c[k]不为正数时要分类讨论。结果先判断sum和a+b数根相不相等,若不等说明不存在能够分成两组的情况,只需(*)判断能不能全部人去A门或B门,若相等显然dp[n][a](或dp[n][b])即为结果,这时候为保证绝对是分成两组的情况,再判断a门(上面取dp[n][b]时判断b门)数组是否等于sum,是就减去1,再特判(*)处的情况。

# include 
# include
# define MOD 258280327# define MAXN 100000int arr[MAXN+3], dp[MAXN][11];int fun(int a, int b){ int temp = (a+b)%9; return temp==0?9:temp;}int main(){ int T, n, a, b, i, j, ans, sum, result; scanf("%d",&T); while(T--) { memset(dp,0,sizeof(dp)); result = sum = 0; scanf("%d%d%d",&n,&a,&b); for(i=1; i<=n; ++i) { scanf("%d",&arr[i]); sum = fun(sum, arr[i]); } dp[1][arr[1]] = 1; for(i=2; i<=n; ++i) { for(j=1; j<=9; ++j) { ans = j-arr[i]; if(ans < 0) dp[i][j] = (dp[i-1][j] + dp[i-1][ans+9]) % MOD; else if(ans == 0) dp[i][j] = (dp[i-1][j] + dp[i-1][9] + 1) % MOD; else dp[i][j] = (dp[i-1][j] + dp[i-1][ans]) % MOD; } } if(sum == fun(a, b)) { result = dp[n][a]; if(a==sum) --result; } if(a == sum) ++result; if(b == sum) ++result; printf("%d\n",result); } return 0;}

转载于:https://www.cnblogs.com/junior19/p/6730074.html

你可能感兴趣的文章
Django之组合搜索组件(二)--另附simple_tag的创建使用方法
查看>>
webpack打包The 'mode' option has not been set,错误提示
查看>>
kermit的安装、配置、使用
查看>>
jQuery 的attr()与css()的区别
查看>>
程序员面试宝典纠错,取反操作的优先级高于移位,而非移位的优先级高于取反,整型提升蒙蔽了真相...
查看>>
Python中的对象引用、浅拷贝与深拷贝
查看>>
验证对Random的两个猜想
查看>>
打包压缩基础
查看>>
技术点链接
查看>>
【转】ArrayList的toArray,也就是list.toArray[new String[list.size()]];,即List转为数组
查看>>
正则表达式整理
查看>>
OpenStack Keystone架构
查看>>
mysql常用命令
查看>>
Hadoop - WordCount代码示例
查看>>
STL阶段练习(简单电话簿功能模仿)
查看>>
原创《分享(Angular 和 Vue)按需加载的项目实践优化方案》
查看>>
3月4日作业总结,成绩
查看>>
Comparable和Comparator的区别
查看>>
删除指定文件夹下所有的.svn文件夹
查看>>
for嵌套:1.兔子生兔子问题 2.打印菱形 3.求100以内质数的和
查看>>